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In a number of cases it is convenient to solve problems of the theory of elasticity in
terms of stresses, In order to do this, it is necessary to append the equations of compati-
bility in terms of stresses to the equations of motion, These compatibility equations fol-
low from the equations of compatibility in terms of strain and the constitutive equations
- the stress-strain relations, For media which are physically and geometrically linear,
the compatibility equations in terms of strains are the Saint-Venant compatibility equa-
tions, and those in terms of stresses are the Beltrami-Michell equations. The generaliza-
tions of these equations for geometrically nonlinear media are developed below,

1, A property of fourthe-order tensors of special form, Letuscon-
sider a three-dimensional space in which the distance between any two nearby points is
given by the positive definite quadratic form

ds? = g, g dx* dzP (1.1)

where the functions g,, (2, 2%, z%) are the components of the symmetric metric tensor,
Here and in what follows it will be assumed that a summation is carried out with respect
to a script which occurs twice and that the Greek scripts take on the values 1, 2, 3,

Let us take a fourth-order tensor A,,;, in this space having the following symmetries

A =~ Apops A == Ao Ay = Avrg (1.2)
As is easy to show, in three~dimensional space this tensor has only six independent

components, corresponding, say, to the following values of the scripts:
vxhp = 2112, 3223, 1331, 3121, 1232, 2313 1.3)

In general it is possible to associate six contracted tensors of second order with a
fourth-order tensor by means of contraction of two scripts, However, for the tensor under
consideration, only one of these contracted tensors is independent because of the sym-
metries (1.2). This one may be taken as that obtained by contraction with respect to

the first and last scripts Ay =" A (1.4)

where 1, v -
R 1 5 _ v __ l ’ B
Ig “———-|1ng||—, g gap'"sp. - l 0, ve. o

The contraction (1.4) is a symmertric tensor, This assertion follows from the symmetry
properties of the tensors occurring in its definition. Indeed,
Ay = gvp.Av).xp.z gvp.Axpwl = gp'vAp»x"Av: A

(1.5)

Therefore, independent equations are determined in (1,4) for the values of the scripts
xh = 11, 22, 33, 12, 23, 31 (1.6)

Thus, in a three-dimensional space the fourth-order tensor 4,,,, with the symmetries
{1.2) has exactly the same number of independent components as the symmetric tensor
A, The tensor A,; is expressed in terms of the tensor 4,,,, by Eq.(1.4). We shall
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show that, conversely, 4,,), can be expressed in terms of the symmetric tensor 4,,. To
do this we form a fourth-order tensor having the symmetries (1.2) from some symmetric
second-order tensor B,, and the metric tensor g,, . We now examine the equations

Avx).p,= g'x)\va. _gxp,BvA + gvy.Bxx - glexp. (1.7
in which the scripts take on the values (1,3), These equations may be regarded as a sys-

tem of six linear, algebraic equations in the six unknown quantities B, (@ <B=1,2,3)
It is not difficult to verify that the determinant of the system (1. 7) has the value

—2det “ gaB “ (CC, ﬁ = 1’ 21 3)

and is then nonzero because of the positive definiteness of the form (1.1), The system
of Eas, (1, 7) is, therefore, solvable, In order to compute the solution of this system, we
transform it to an equivalent system, It follows from the symmetry properties of the
tensors on the right-hand side of (1,7) that the system of six equations under considera-
tion is equivalent to the full system (1,7) in which the scripts vaAp may all take on the
values 1,2, 3, Now multiply the equations of the system (1, 7) by ¢"* and sum on the
scripts v and p. Then considering Eas, (1.4) and (1, 5), we find as a result that the sys-
tem (1. 7) can be expressed in the form

An=Jgn+ By (J =¢°"B;,) (1.8)
The following equation is a consequence of (1, 8):
I=gRA,,=4J (1.9)

This relates the invariants of the tensors 4,, and B,;. Equations (1. 8) and (1, 9) per-
mit us to determine the unknowns in the form

Bx). = Axl - llllgxl

Returning to the relations (1, 7), we find the components of the tensor 4,,,, expressed

in terms of the components of 4, by means of the linear homogeneous equations
AVx).p.= gxlAvy. - gxp.AvA + gvp.Axx - gv).Axp. + kI (gxp.gvA - gxlgvp-) (1-10)

These equations then solve the problem posed,

The relations (1. 4) and (1.10) allow us to assert that if one of the tensors 4,,, 4,,,,
is zero, then the other one is also, Thus the following Theorem is proved, A necessary
and sufficient condition for the vanishing of a tensor 4,,,, having the symmetries(1.2)
is the vanishing of its contraction 4,,.

This Theorem makes it possible, for instance, to express the conditions for a space to
be Euclidean in various forms, It is well known [1] that the condition of the space being
Euclidean is the vanishing of the Riemann-Christoffel tensor

arp.lv an.).x

RV*’ib: dr* 92" +g* (kaxrap.v - Fulvrapx) =0 1.11)

where g, 8 984+ dg By

abr ™ gt T agB T 9a®

are the Christoffel symbols, The fourth-order Riemann-Christoffel tensor also possesses
the symmetries (1, 2), Therefore, in three dimensions it has six independent components
corresponding to the values (1, 3) of the scripts vxAp. The condition of the space being
Euclidean is, therefore, a system of six differential equations which the six functions
Bap (@ < B =1, 2, 3) must satisfy,
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The symmetric second-order tensor, the so-called Ricci tensor
R, =g"R

x
is associated with the Riemann-Christoffel tensor by contraction on the first and last
scripts, By virtue of the theorem which has been proved, the condition that the space is
Euclidean can be stated as the vanishing of the Ricci tensor

or ar
v whv pAX
ka= g w [ oz - az’ +gam (I‘m)\xrapv - levrmpx)] =0

This condition is another system of six equations in the same six functions g,5. The
independent equations correspond to the values of the scripts in (1, 6).

2. The equations of compatibility {n terms of strain, The defor-
mation of a body as it goes from some initial configuration (corresponding to the instant
of time ¢°) to the final configuration (corresponding to the instant ¢) is described by a
symmetric, second-order tensor e , the strain tensor, The components of this tensor are
defined by the equations [1]

Zaas (21, =%, 25, 1) =8qp (z, 2%, =¥, 1) — g:g (z!, 2%, 23, t°) 2.1)

where 8ap and g,p are the components of the metric tensor in the comoving (material)
coordinate system 2!, 2%, 2% at the instants ¢t*and ¢, respectively, For continuous defor-
mation the six functions (2, 1) satisfy the compatibility equations. These express the
fact that the deforming medfum is in a three-dimensional Euclidean space, They are
obtained in the following way, We shall identify the material coordinate system z?, 22,
z® at time ¢ with the reference system relative to which the motion of the medium is
considered, We take the conditfon that the space is Euclidean in the form of the vanish-
ing of the Riemann-Christoffel tensor, Then at the instants of time ¢ and ¢° we have,
respectively, Eqs, (1.11) and the equations

Oy %0

x T ap +g° (T oanl ey — T aav ) =0 (2.2)

R.VXAp. = az

in which the values of the quantities at time ¢° are indicated by the degree symbol,
Wwith the aid of the equations 828 = Eap — 28,8 (2.3)

which follow from the definition of the components of the strain tensor, a connection
can be established between the Christoffel symbols at the two instants of time in the

form ¥ €ag Oe,, aeBY
(GaBY

Iy = Lapy — Gapy = Toz" 3z oz® (2.4)

Substituting (2. 3) and (2, 4) into (2, 2) and subtracting the result from Eq, (1.11), we

obtain e, &%, o, , Pe,, . .
x> + 9z'9z* ~ 3x"dx*  9x'9x* @ — &) Torxapy —
- goaw (Gmlxapv — Bu).xauv) =0 (2.5)

where, in accordance with the values in (1, 3), six equations are determined by the scripts
vxip ., and where

r G, ., — Gy G

apy rmlvrap.x' Gw)\xapv = Guax apy oivapx
Bw).xap.v = rw)\xaapv + Gm)\xrapv - Fm)‘vcapx - Gmkvrap.x
° M= -1
185°1=128 al™=18a0 — 28aul

@AXaPY TeonnT'



On the compatibility equations in terms of strains and stresses 1061

These are then the equations of compatibility written in arbitrary coordinates, We shall
show that the left-hand sides of these equations can be expressed in terms of the covari-
ant components of the strain tensor and the covariant derivatives of these components,
Let us take the first and second covariant derivatives of the components of the strain ten-
sor de,

(0
v)‘ep.v - axl

] G g __ Ot
—'eavrpl - e1.:<:Pvl' Pp.l =g rtpl

vax 8p.v = -az_x VAep.v - vr epvr‘;x - V). eer:Lx - vkeinr:x

It is easy to verify that the following relations hold in Euclidean space:
0%, d%,,
ViV ity + ViVt — VxV“eM - V‘,V)‘e‘m = W + m —
d%,, %,

T oz*ar* oz’ ort

ag _Tw

+ ga“’ wlxzp,v" Zedln) mlxa“v ’ efl(n - g g 801 (2.6)

A direct computation will verify the correctness of the equation
Conx = Vo + Vaux — Vooax = Gorx — zawcrcxx 2.0

emc = gcr&m: =1y (Bmc - gcrgo..w)

On the basis of Eqs, (2, 7) and the equation
2g:°’\e‘°° o ggfl _ gac
the following relation can be established:
& " (Cw)\xcapv - cmkvcapvx) = goaw Gianxapy — (& — £°“) Borapy —
- ro:hmp.v) — 2%¢T,

If (2, 8) is subtracted from (2, 6), an equation is obtained whose right-hand side coin-
cides with the left-hand side of the equationsof compatibility (2, 5). Therefore, the equa-~
tions of compatibility of strafn may be written in the form
vaAel‘,y + Vpre).x - vxvp. € Vvv)\ep.x - goaw (CwaCapv - Cw).vCap.x) =0 (2-9)

The quantities g;B are the components of the metric tensor G, in the material coordi~
nate system at the initial instant of ime, However, at the general time ¢ tie metric
tensor G has the components g, in the material coordinate system, and t.e quantities
g;a at that instant are the components of some other tensor 7 which differs from the
metric tensor, It'is easily seen that the quantities g‘(’,a at the general time ¢ are the com-
ponents of the tensor 72, the inverse of the tensor 7. From the Cayley-Hamilton iden-
tity for the tensor T taken in the form "

T Tm—-—nT4+LG)=G

2.8)

DAXA PV

where 1), I,, I3 are the principal invariants of the tensor T, it follows that 71 can be
represented in the form _ I, ' 1
T = T G — Ty T+ T, T
In view of Eq, (2, 3), the tensor 7. is a function of the strain tensor
= G — 28

A simple calculation shows that the invariants of this tensor are expressed in terms of
the principal invariants J, (@ = 1, 2, 3) of the strain tensor according to the formulas

1123—211, 12=3—~411+412, 13=1—2J1+412_813
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In an arbitrary curvilinear coordinate system the invariants of the strain tensor are
expressed in terms of its covariant components as
aBy emct

J— afhy ,wot
82308y Jg == 1/ge%P709T¢

J:=gaB"'aB- Jo=1se 20800 8ye

where ¢*#Y are the components of the alternating tensor,
The inverse tensor is expressed in terms of the strain tensor according to the equation
T1=K\G+ Kge + K,e?, Ky = (1—-2J, 4+ 4Jy)A
Ky = 2(1—2J1)A K3 = 4A, A = (1-2J, + 4I,—8Iy)™ (2.10)
In tensor notation this equation has the form
80" = K1g™® + Kog®°g™ e, + Keg® g P e, e,

The relations (2, 7) and (2,10) make it possible to express the compatibility equations
(2. 9) in the form

vka sp.\o + vvvp.elx - vxvp.elv - Vvvkepx — (K™ + Kzgaagtwear +
+ ngacgrﬁg*rwemas\') [(vxewk 4+ Vatux — Vwe)‘x) (Vvea};f*‘ V,&av - Vaep,v -
- (v\lemk + Vlewv - vc.)elv) (ana“ + vp.eax - vgep.x)] =0 (2.1 1)

which contain only the covariant components of the strain tensor and their first and
second covariant derivatives, In these equations the scripts vxAp take on the values in
(1.3).
Equations (2,11) hold in arbitrary curvilinear coordinates, In the special case of a
rectangular Cartesian coordinate system
de

By
Vit ="7a  £¥F=84
the compatibility equations (2, 11) take the form
o, 9% ¢y, d%,, 0%,

az* ar* + oz’ az* ~ 9x*oz*  oz'art (Kb, + Ky + Ko2y5,) X

aem). aewx ae)\x a"’ap. aeav aep.v
X [( ax* + ox*  9z® )( az’ + az* | 9x% )_
_ 680)} + 68‘”; _ 68,:: Bea: + 682: _ 8ep: o
ozx oz ox oz oz oz

where the scripts assume the system of values (1. 3).

We note that Egs, (2.11) are valid for arbitrary strains, If the strains are small, so that
both the components of the strain tensor themselves and their first and second derivatives
with respect to the coordinates are small relative to unity, then the nonlinear terms in

(2.11) become small terms of higher order and can be neglected, The compatibility
equations can then be written in the form
VxVa €y + VVV,.BM - vxvp. VRV Eix = 0 (212)
where the scripts take the values of (1,3). These are the Saint- Venant compatibility
equations for small strains written in arbitrary coordinates [2], In rectangular Cartesian
coordinates these equations have the form
Fe,, 3%, ey, e
az* ar* + 3z’ 9z*  8x*az* Oz’ 0t
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We note that the form of the compatibility equations (2. 9) can also be obtained from
other considerations, Let us first consider some relations which will be needed, The ele-
ments of the coordinate bases of the material coordinate system at the initial and gene-
ral times are defined in terms of the radius vector of the point at the appropriate time
by the equations Oro or

’ 3
oz? e dz°
By differentiating with respect to the coordinate z° the equation

(0)
8, =

r—ro=w=u%; =w,2{"
which defines the displacement vector, we obtain equations which relate the base vec-
tors for the different times as follows:

— 7,0 _ (0 —C . =
a,=C7s® =5 P, o =Cle, =C,,o" (2.13)
The coefficients in these expansions are expressed in terms of the components of the

displacement vector in the different bases by the formuias

0y _ 0). 0) __ b) 0) . (0 0),.(0
OOY =01+ T O = OO = 4G+ O

) A A
Cm)-\:&w- — V¥ pr.=cm~g}\p.=gwp.*— oy
and are connected by the obvious relations
coxct=5f  C1COF=35rp (2.14)

The following Lemma holds: the matrices Cf,‘B and C,, of the expansions (2.13) are
the transposes of each other, i, e, Cup= ng (2.15)

To prove the Lemma, we form the scalar product of the vector equations (2.13), We

have
oo . C0)g B (0)
Cop -8, =Cga, 29

From this result and the reciprocity of the base vectors
= B.5(0) _ 8B
o*.a, = 6%, a,”-a) = 8%,

we arrive at Eq, (2.15), Lemma is thus proved,

The relation (2,15) can be expressed in another, equivalent form, To this end, we
multiply both sides of it by the quantity g5 £° and sum on the scripts ¢ and.p; as a
result we obtain goamcmc_x — gcpc(o); (2.16)

This means that the matrices in the expansions of the base vectors
o = 8000 = g 0C 10, o = g%, = ¢°°C e

are also the transposes of each other, In view of the properties (2, 14), Eq, (2. 16) can
also be written in the form g =g0Cc.oCT (2.17)
we X .

Let us now return to the derivation of the compatibility equations, It is well known
from [1] that the strains are expressible in terms of the displacements by the equations

2,, =, +Vw, — g‘“v»wc,\mw1 (2.18)
The compatibility equations will be obtained if the displacements are eliminated

from these equations, In order to do this, we calculate the first and second covariant
derivatives of the components of the strain tensor with respect to the coordinates
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2V, 8,0 7= VoV, + ViV, — 8°F (VA 0o V0, + V0o Va V) (2.49)

2vka epv = vaxv“'vv + va)‘vva, - (220)
- (VxVpranvw, + vapwcvxvvw .+ vxvp.wcv)‘v We + vacvxv)\vvwr)

As is easily verified, it is possible to eliminate the third derivatives of the displace-
ments from (2,20) by forming the following combination:

Va8 + VoV ueax — ViVpery — V) 8px = (2.21)
= gct (vVv‘;wQVxV}‘w-. - vAvaov xvvurr)

The expression which is obtained contains only second derivatives of the displacements,
It turns out to be possible to eliminate the latter using Eqs, (2.19). In fact

Cm).x = vx-eml + viewx - vw €ix — vkawocmc'
Therefore,

Cwlxcap.v - Cm)\vcap.x = Cofclf (vvvp.wcvkaw-. - vhvp.wcvxvth)
We then multiply both sides of the last equation by g;“, sum on a and v , and by use
of the relation (2,17) we have

goaw (Cm) xCa py Cw).vcap.x) = gcr (v\zvp.wcvxvxwr - v)‘vaovxv\lwf) (2'22)

It is now easy to see that by subtracting (2,22) from (2,21) we eliminate the displa-
cements entirely and thereby obtain equations for the quantities £,g which coincide
with the compatibility equations in the form (2. 9).

Thus the expressions (2. 18) for the strains in terms of the displacements may be
regarded as integrals of the equations of compatibility,

We remark that for strains and angles of rotation which are small compared with unity,
the nonlinear equations (2, 18) may be replaced by the linear relations [3]

2e,, =V, 0, + Vo, (2.23)

Computing the second covariant derivatives of these and forming the combination
(2.21) we-obtain equations which do not contain the displacements and which agree
with the Saint-Venant equations (2.12) Therefore, the Saint-Venant equations are a
consequence of the linear equations (2,23),

The equations of compatibility state that a certain fourth~order tensor is zero, It is
not difficult to verify that this tensor possesses the symmetries (1.2). Therefore, by vir-
tue of the Theorem of Sect, 1, Egs, (2. 9) are equivalent to the equations obtained from
them by contracting with respect to the scripts v and p. These equations have the form

Aex)n + va}‘Jl - VxV“em - V).vp'exp. - g{(;wgp” (CmAxCap.v - Cw).vcap.x) =0 (2.24)
where y# is the operator of contravariant differentiation, A is the Laplacian operator,

and the scripts xA have the values of (1,6) Written out in full, Eqs.(2,24) have the
expressfons

Aey, +V, Vi1 — vap'e),p, — VO & — (K1g* + Kog*%g e, +
+ Kag®°g™Pg 0. 85, ) [(Vuun T Viux — Vi) @V &y, — Va /1) —
— 8" (V,8un + ViBuy — Vor) (Vi T Vy Eax — Vi)l =
The equations which have been obtained are a special form of the compatibility equa-

tions ; they are equivalent to Egs, (2,11), In rectangular Cartesian coordinates these equa-
tions are of the form
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%, *, o%,,, 0%,
az* oz* | 9x® 9z 9x* dx* ozt ozt KBy, + Koty + Kse,o85.) X

X aeu))\ + aewx _ a‘"‘).x 5 aa:y. _ aJy .
dx* ' ozt oz® oz*  9z®
_ de,, B g, _ g, ey, + de, _ - o
oz¥ ' ozt 8z dz™ oz¥ az® ||
For small deformations it is permissible to neglect the nonlinear terms in (2, 24) and
to write the equations in the form
Aex)\ + VXV)\JI - vaphz)m. - Vkvp'exy. =0
This is a special form of the Saint-Venant equations of compatibility for small strains
given in arbitrary coordingtes [4], In Cartesian coordinates they have the form
3%, 937, _ 0’% 623,‘»
oz* gz¥ ' 9z* 9z 9% dz* 9zt st
8, The compatibility equations in terms of stresses, In the physi-
cally linear theory of elasticity it is assumed that the constitutive law for the medium
is the generalized Hooke's law, which states that the components of the strain tensor ¢,
are homogeneous linear functions of the stress tensor P,

14w v
tp = "F  LPap — F J16ap (3.1)

where J, is the first invarfant of the stress tensor, £ is Young's modulus, and v is Pois-
son's ratio,

Since for continuous deformation of a medium the components of the strain tensor
satisfy the equations of compatibility, it follows from Hooke's law that the components
of the stress tensor also satisfy certain equations if the deformation is to be continuous.
These equations are called the equations of compatibility in terms of stresses, Let us
obtain explicit expressions for them,

The principal invariants of the stress tensor ate defined by the equations

Ji= gaBPaB' Jo = l/ze:!ﬁ‘Y emcrgam Pﬁc Pw' Js= ,/oeaBY £t Pao) PBGP

The following relations between the invariants of the strain and stress tensors are con-

sequences of Hooke's law ¢

12y 1 . .
J1= E Jl, Jz—“—ﬁ[(l—*—‘v) Jz—‘V(z—-‘V)Jll

(2.25)

=0

D%

1
Js=F5 [(1 + Vs —v(1 +v)*J1]z + v?J2%]

Returning to Eqs, (2, 10), we see that they may be written as

g(a)mlegaw + ngaog:m};o?+L3gacg18ngpctph (3.2)
v v 1+ 2v | 1 2
L1=K1—TJ1K2+ﬁfx’Ks. Lz='_i_,;—<K2—-—E"‘/1Ks), L3=(—-Zsil(a

and are clearly functions of the stress invariants, The covariant derivatives of the stress
and strain tensors are related as follows:

14w v
Vator =~ VaFur ~F Vil 1o
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1 +wv LY
V‘;Vx S e vp.VmeA —"E vp.vx‘hgwl
Therefore, we have

+v

v
Ae,, = APy, — 5 AJigy,, VxVAJI'— E vajl

1
VP try + ViV ey = e (VT Py + ViV Po) — e O, 050s (329)

14w v
Corn= E D —TE F o (3.4)

A% T vx‘pmx + v).‘pwx - va).x’ Fm?«.x = Vx‘hgm)\ + vljlgmx - VmJlg}\x (3.9
Substituting Eqs, (3. 3) and (3, 4) into Egs, (2, 24), we obtain
1
AP, +7 + v V,,V;‘h Tov + v Mg, —V VAP R VAAVAS e

gg“’g"" [

( win ap.p o:)\pDap-x) (Dmlx apep + Fm?.x awp
Dm?\p ape lepDap.x) + E( + V) (Fm?\xFap.p_ Fo)ApFapx)]m Y

In view of Eqs, (8.2) and (3, 5), these equations contain only the components of the
stress tensor and their first and second covariant derivatives, These are then the equations
of compatibility in terms of stresses which are suitable for geometrically nonlinear me-

dia,
Some simplifications of these equations are possible, If we use the equations of equi~
librium
1 U vp' P).P- = — fl
where f, are the components of the body force, we have
vapplp, + v)\vppxp, = v;(fl “"V}]x
gp‘pDap,p == 2/“1 — 1 gp'pFaP'p E vajl
Taking account of these equations, we mav write the compatibility equations in terms
of stress in the form 1 v
AP, + T+ v VAJI_T_W ATsgy, + Vi fs + Vit +
+ {ngam +L gao TO Pc*: 4 LSgQOgthYQPc-: PS?) %

14
[ 1D @ A+ VT 85Dy Doyl —
E [ )‘xv ‘71 + FmAx (2f + Va‘fl) + gP-P( w};pF(lpv'A + Fm)xp ap.x)] +

+ m)' [F Va1 4 " F o, Fosz}} =0 (3.6)
The independent equations of this system are determined by the values of » and A in
(1.6).
We note that Eqs, (3.6) are given in tensor form and contain only covariant compo-
nents of the stress tensor, However, proceeding from these equations we can obtain others
containing only contravariant components of stress, All that is needed to do this is to

apply the operation of raising the scripts in Eq. (3,6). As a result, we obtain the equations
of compatibility in terms of stresses in the form
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AprA -+ 1 _*_vV"vljl— 1 _T_ > Ajlgiﬂ + vx f)‘+ vh jx + (ngam + ngaogtmpaf +
1
L8ty PP {LBT DM @ 4 97 4 £, DD —
___g‘_ [Dm)\xvle +_ Fm)\x (2ja+ V"Jx) +gp.p (Dmlcpzp.x 4 Fm)‘pngpx)]_*_
v? .
+Eap ey [PVt gy RO I} =0 .7
where
P — gxogﬂpcr' /)_ — g;w fc

Ax vxpm). + lemx _ va).x’ Fw).x — ijlgwl + v).Jlgmx . vmjlg)‘x
and the scripts have the values in (1. 6).
In the special case of a rectangular Cartesian coordinate system, the forms (3, 6) and
(3. 7) of the compatibility equations in terms of stresses coincide and are

9*P,, 1 ooy v BN oo o Otk
0920 T 14V ag%er T4V aa%5s0 O g 61:)‘ -
14w . .
+(L161m+L2Pao)+L3 ao cw) E [ whx +Dwkaapx -
v . aJ] ’
__E_' Dm).x 9z +Fm).x< f + +Dm)ppsz+pm)p aE% +
v2 ., dJy
+E(1+v) [Fw)xaa+Fm)p apx]}=0
where
B apml ame aplx P aJy a1 (9]1
D= ™ az*  9z® ' wAx = ™ Y e wa— 6

The compatibility equations in terms of stresses (3, 6) correspond to the general non-
linear strain-displacement relations (2,18), For small strains and rotations these relations
are linear and the compatibility equations (2, 25) are also linear, In this case, the com-
patibility equations in terms of stresses are linear as well, It is easy to see that they are
just the linear part of Eqs, (3.6)

1 v
AP+ T3 VaVadi— Ty A1 + Vi 12 + Vi £ =0 (3.8)
These equations can be simplified further, In the case under consideration the stresses
are expressed in terms of the displacements by
v E
Pron=137% 8u T 2@ 1w Vvt Viw)

It follows from this that the first invariant of the stresses is proportional to the diver-
ence of the displacements E
8 d Ji= 155 Vvt

From the divergence of the equations of equilibrium
V.1 + EAw, = —2(1 + v)f,
we can express AJ, in terms of the specified body forces in the form

14w
v V' /a

Taking account of this result, we write (3, 8) in the final form

Ay = —
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1
APo+41y VXVA11+1—:;V“/15’,Q+V& Ia+Vaf=0 (3.9

These are the Beltrami-Michell equations of compatibility in terms of stresses which
are presented in the linear theory of elasticity [4, 5], Raising the scripts x and A, we

obtain the equations in the contravariant stress components
1 v

AP 44 VMV T VP A VR AL =0 @310)
In Cartesian coordinates, Eqs, (3, 9) and (3,10) have the form
0P, 1 9 v 9, 5 O | Ok 0
97502 TTFV ozt T1—v gg2 0T 5px T =

Thus, the Beltrami-Michell equations of compatibility in terms of stresses correspond
to geometrically and physically linear elasticity; Eqs, (3, 6) are the generalizations of
these equations in the case of geometric nonlinearity,
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The problem of a circular cylindrical shell of elastic isotropic material subjected to
concentrated loadings is considered, As is known, such a problem in two-dimensional
formulation (based on Kirchhoff-Love hypotheses) reduces to the construction of the
Green's function for an elliptic equation in the resolution function,

A fundamental solution in closed form has been obtained in [1, 2] for the shallow
cylindrical shell equations by using Fourier transforms, A method of the theory of gene-
ralized functions [4] was utilized in [3] to construct a fundamental solution of the equa-
tions of the theory of shells of positive Gaussian curvature,

Fundamental solutions are constructed below for the most prevalent modifications of
the theory of nonshallow circular cylindrical shells [5— 8], In contrast to [1—3], the "clas-
sical” method of plane waves and spherical means [9] is utilized which permits, so to



